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Thermal instability in a horizontal fluid layer: 
effect of boundary conditions and non-linear 

temperature profile 

By E. M. SPARROW, R.  J .  GOLDSTEIN AND V. K .  JONSSON 
Heat Transfer Laboratory, Department of Mechanical Engineering, 

University of Minnesota, Minneapolis 14, Minnesota 

(Received 7 August 1963 and in revised form 28 October 1963) 

An investigation is carried out to determine the conditions marking the onset 
of convective motion in a horizontal fluid layer in which a negative temperature 
gradient occurs somewhere within the layer. In  such cases, fluid of greater density 
is situated above fluid of lesser density. Consideration is given to a variety of 
thermal and hydrodynamic boundary conditions at the surfaces which bound the 
fluid layer. The thermal conditions include fixed temperature and fixed heat 
flux at the lower bounding surface, and a general convective-radiative exchange 
at the upper surface which includes fixed temperature and fixed heat flux as 
special cases. The hydrodynamic boundary conditions include both rigid and 
free upper surfaces with a rigid lower bounding surface. It is found that the 
Rayleigh number marking the onset of motion is greatest for the boundary 
condition of fixed temperature and decreases monotonically as the condition 
of fixed heat flux is approached. Non-linear temperature distributions in the 
fluid layer may result from internal heat generation. With increasing 
departures from the linear temperature profile, it  is found that the fluid 
layer becomes more prone to instability, that is, the critical Rayleigh number 
decreases. 

1. Introduction 
When a horizontal layer of fluid is heated from below, the density of the fluid 

near the top of the layer is greater than that of the fluid adjacent to the heating 
surface. A t  first thought, it  would appear that such an arrangement of the fluid 
would be unstable and immediately break down into a convective motion. How- 
ever, it has been shown both theoretically and experimentally that the fluid can, 
in fact, remain in a quiescent state for a range of values of the temperature 
difference between the bottom and top surfaces. When this temperature differ- 
ence exceeds a critical value which depends on the layer thickness and the fluid 
properties, then the quiescent state breaks down and thermal convection 
sets in. 

The earliest experiments which called attention to the aforementioned 
thermal instability phenomenon are reported by Thomson (1883) and by BBnard 
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(1900). Of these, the latter investigator presented a much more complete 
description of the development of the convective flow. As a consequence of 
this work, the thermal instability problem is frequently referred to as the BBnard 
problem.? The first analytical treatment aimed a t  determining the conditions 
delineating the breakdown of the quiescent state was carried out by Lord 
Rayleigh (1916). Rayleigh’s work was generalized and also extended to a 
broader range of boundary conditions by Jeffreys (1926, 1928), Low (193Y), 
and Pellew & Southwell (1940). The latter of these presents the most complete 
theory of the thermal instability problem available up to this time. A very 
valuable survey of both theoretical and experimental investigations relating to 
thermal instability has recently been published by Ostrach (1957). 

The aforementioned analytical studies have considered hydrodynamic bound- 
ary conditions which correspond to the following containment conditions of 
the fluid layer: (1)  the upper and lower bounding surfaces are both rigid; (2) the 
lower surface is rigid, while the upper surface is free; (3) the upper and lower 
surfaces are both free. The latter condition does not appear to correspond to a 
real physical situation but may be of theoretical interest. 

The thermal conditions usually applied a t  the upper and lower surfaces 
of the fluid are based on the supposition that these surfaces are in contact with 
materials of infinite thermal conductivity and heat capacity. From such a model, 
it  follows that the temperatures a t  the surfaces are not perturbed when the 
quiescent state breaks down. I n  a special case, Jeffreys (1936) imposed a con- 
dition which he described as corresponding to an insulated upper surface. 
Objections to this condition have been raised both by Low and by Pellew & 
Southwell on the grounds that it precludes a steady non-zero temperature 
distribution in the fluid, 

Consideration of actual physical situations suggests that the heretofore 
standard thermal boundary conditions of fixed temperatures a t  the surfaces of 
the fluid layer may be too restrictive. For example, when the upper surface is 
free, there will be a heat exchange between the free surface and the environment. 
If the heat-transfer coefficient between the surface and the environment is 
finite, the surface temperature will be perturbed when the quiescent state 
breaks down. One may cite various other illustrations of the restrictive nature 
of the fixed-temperature boundary conditions, but perhaps one other will 
suffice. For instance, if the heating a t  the lower surface is accomplished by 
passing an electric current through a thin metallic foil, then the boundary 
condition at the lower surface may be more nearly a fixed heat flux rather than a 
fixed temperature. 

Considerations such as the foregoing provide the motivation for the first 
portion of the present investigation. The aim of this study is to determine 
analytically the conditions for the onset of convection for a broad range of ther- 
mal boundary conditions. Specifically, consideration is given to the case of 
arbitrary thermal conditions (i.e. arbitrary heat-transfer coefficient) at either 
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t It has been recently suggested by Block (1956) and by Pearson (1958) that the 
flow observed by Benard was caused by surface tension rather than by gravity. 
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free or rigid upper surfaces corresponding to either fixed temperature or to fixed 
heat flux at  a rigid lower surface.? 

In prior analytical work on thermal instability, it  has been customary to deal 
with a quiescent state characterized by a fluid temperature which is decreasing 
linearly with height. It is of interest to determine in what way the stability would 
be affected if the quiescent state were characterized by a non-linear temperature 
profile. Such a non-linear profile could arise if there were an internal heat genera- 
tion within the fluid; for example, due to Joule heating in an electrolyte. Conse- 
quently, the second portion of this investigation is devoted to study of thermal 
instability in the presence of a non-linear temperature profile, such as that due 
to internal heat generation. 

To begin the presentation, certain aspects of the analysis common to both 
portions of the investigation will be developed. The general solution will then 
be specialized to the specific studies relating to the thermal boundary conditions 
and to the fluid temperature profile. 

2. General theory 
Consideration is given to a horizontal fluid layer bounded above and below by 

surfaces through which heat may flow into or out of the fluid. In addition, there 
may be an internal heat generation within the fluid. The horizontal extension of 
the fluid layer is sufficiently great so that edge effects may be neglected. If the 
temperature within the layer were increasing monotonically upward under 
steady-state conditions, then lighter fluid would always be above heavier fluid 
and there would be static equilibrium without motion.$ Under certain conditions, 
a quiescent steady state can also occur when heavier fluid lies above lighter 
fluid. The existence of such steady states can be investigated by finding the 
conditions under which a given density distribution (i.e. a given temperature 
distribution) is stable against small disturbances. 

The thickness of the fluid layer will be denoted by L, with z measuring dis- 
tances vertically upward; z = 0 corresponds to the lower surface of the layer 
and z = L corresponds to the upper surface. The co-ordinate axes x and y lie 
in a horizontal plane. Under steady-state quiescent conditions, the temperature 
distribution in the fluid depends only on z 

T,, = - (X/2k) z2 + AZ + B, (1) 

in which X is a uniformly distributed internal heat source (energy/volume-time) 
and Ic is the thermal conductivity. The integration constants A and B may be 
evaluated from the thermal boundary conditions at  z = 0 and z = L. In order to 
keep the analysis general, these boundary conditions will not be specified a t  
this time. 

t It has been pointed out to the authors that thermal conditions a t  the upper surface 
similar to those of the present investigation have also been considered in a recent doctoral 
dissertation by Sani (1963). Sani’s work was concerned with the case in which both the 
upper and lower boundaries are free surfaces. However, it is just this case that was ex- 
cluded from the present investigation. 

1 These considerations apply to fluids whose density decreases with temperature. 
33-2 
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To investigate the conditions under which the quiescent solution is stable 
against small disturbances, one postulates a slightly perturbed state such that 

T(x7 y, 2, t )  = TSS(~) f T*(x, y, 2 ,  t ) ,  p (z t  y, 2, t )  == $)ss(z) f p * ( x ,  y7 z, t ) ,  ( 3 a )  

u = u*(x, y, z, t ) ,  w = w*(x, y, 2, t ) ,  w = w*(x, y, z ,  t ) ,  (2b) 

in which u, v and w are velocity components corresponding to x, y and 2; t is 
the time, and p is the static pressure. The quantities T*, u*, w* and w* are 
taken to be sufficiently small for their squares and products to be neglected. 
The equations expressing conservation of mass, momentum and energy may 
now be written and the foregoing perturbations introduced. By carrying out 
manipulations similar to those of Pellew & Southwell, it  is possible to eliminate 
all perturbation quantities except w*, the governing equation for which is 

- -aV2  --vV2 V2w*+g/3 - - z + A  V&W* = 0, 
( i t  ) ( l t  1 ( ! 1 (3) 

in which a is the thermal diffusivity, /3 the coefficient of thermal expansion, 
v the kinematic viscosity, g the acceleration of gravity, and Vzu the two-dimen- 
sional Laplace operator. 

A separable solution for w* may be sought in the form (Lin 1958) 

w* = F ( z )  G(x,  y) eat, T* = H ( x )  G(x, y) evt. (4) 

( 5  1 
From the equation of energy conservation, it can be shown that 

V&G + (u/L)' G = 0, 

in which ( a / L )  is a constant arising from the separation of variables, wherein 
a is dimensionless. Further, if we substitute the proposed solution for w* into 
(3) and utilize the condition (5) for G, we obtain 

where Z = z/L, A = - (g/3L4Aa2/av) - a6, !2 = g/3L5Sa2/avk. (7)  

The groups A and Q represent constants which may be prescribed. The $1 and 
k2 functions need not be stated inasmuch as they drop out of the forthcoming 
analysis. 

It has been shown by Pellew & Southwell that the threshold of instability is 
marked by g = 0. Consequently, the last two terms of equation (6) may be 
deleted. The thus-reduced form of equation (6) is a homogeneous ordinary 
differential equation for the perturbation function F .  As will be demonstrated 
later, the boundary conditions are also homogeneous. The resulting eigenvalue 
problem for this homogeneous system provides a means for determining the 
conditions under which a solution for the perturbation can exist. 

2.1. Solution of the perturbation equation 
A general solution of equation (6) with g = 0 can be constructed in the form 

5 

i = O  
F ( 2 )  = Cif' i ' (Z) ,  
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with ci arbitrary, in which the f (i) are rapidly convergent power series, 
W 

f@'= c bpz" (i = 0,1 ,  ..., 5). 
n=O 

(9) 

The series coefficients bg) obey the following recursion relationship for n 3 6 

( 9 a )  
1 

n !  
bg) = -{3a2(n- 2 ) !  bat,- 3a4(n-4)!  bgL,- (AbgL,+ ab?,,) (n- 6)!) 

and b!!\ = 0. In  addition, the bg) through b t )  are specified as 

b$ = Sni (0 6 n Q 5), (9b) 

wherein Sni = 1 for n = i and Sni = 0 for n += i .  
The constants co, cl, . . ., c5 which appear in the solution for F are to be deter- 

mined from the boundary conditions. A thorough-going investigation of various 
boundary conditions will be deferred until the next section of the paper. How- 
ever, it  is useful to specialize the solution (8) for a boundary condition that 
will be imposed on all of the various cases to be studied here. In practice, the 
lower bounding surface of the fluid layer will necessarily be a rigid surface (as 
opposed to a free surface). On such a surface, all the velocity components vanish 
identically (no slip), u* = v* = w* = 0; correspondingly, au*lax = av*/ay = 0. 
From the equation of continuity, it follows that aw*/az = 0. By applying the 
first of equations ( 4 ) ,  the two aforementioned conditions on w* can be restated 
in terms of the F function : 

F = dF/dZ = 0, rigid surface. (10)  
If the conditions for the rigid surface are applied at z = 0, it  follows from equa- 
tions (8) through ( 9 b )  that co = c1 = 0. Therefore, the solution for F correspond- 
ing to this physical situation becomes 

5 
F ( 2 )  = Z; ci f(i)(Z). 

i=2  

2.2.  Solution for linear-temperature case 
The earlier literature has been concerned primarily with the case of temperature 
decreasing linearly with height, i.e. S = 0. It is of interest to apply the foregoing 
general solution to this case and, also, to give an alternative form of solution in 
terms of elementary functions that appears to have been previously overlooked. 

If the temperatures of the lower and upper bounding surfaces are respectively 
Tl and T, (TI > T,), the integration constant A appearing in equation ( 1 )  becomes 
(T, - Tl)/L. With this A and with S = 0, the parameters A and Q which enter 
the F equation take on the values 

A = a2%-a6, Q = 0 (11") 

% = gp(Tl - T J  L3/av. (13)  
When introduced into equation (9  a ) ,  these A and Q specialize the general solu- 
tion for F to the case of the linearly-decreasing temperature distribution. 

wherein '3 denotes the Rayleigh number 
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Alternatively, one may return to the differential equation (6) with these A 
and SZ and seek exponential solutions. After a lengthy calculation, it is found 
possible to construct the following solution for 3’ which contains only real 
(i.e. non-imaginary) quantities: 

F ( Z )  = do cosh r l Z  cos r,Z + d, sinh r,Z cos r,Z + d, cosh r l Z  sin r,Z 

+d,sinhr,Zsinr,Z+d,sin(n(~- l ) ~ Z ) + d , c o s ( a ( ~ -  l)*Z}, (14) 

wherein rl = ( ( w ;  + w?$ + o, } t /J~ ,  r2  = ( (w;  + u;)+ - u1}*/d2, (14aI 

and 2 = (%/a4),, 0 1  = a,( 1 + B X ) ,  0, = +“2X 43.  (14b). 
The do, d, are integration constants which remain to be determined from the 
boundary conditions. 

A t  first glance, the solution (14) with its elementary functions may appear to  
be computationally more useful than the series solution (8). As will be seen later, 
however, the boundary conditions involve higher derivatives of the F function 
(up to the fifth). The fifth derivative of equation (14) is exceedingly lengthy, 
while the fifth derivative of the series solution (8) is relatively simple. From 
the numerical standpoint, the series solution has proved to  be much more useful 
than the alternative solution (14). 

With the general formulation of the problem thus complete, specific study 
may now be made of the effects of various boundary conditions and of a non- 
linear steady-state temperature distribution. 

3. Stability criteria for various boundary conditions 

Consideration will be given here to determining how the stability of an initial 
quiescent state depends upon the thermal and hydrodynamic boundary con- 
ditions. For this phase of the study, the temperature distribution of the quiescent 
state will be taken as linearly decreasing with height (no internal heat sources 
or sinks, S = 0). The temperatures of the lower and upper bounding surfaces are 
respectively Tl and T,, with T, > T,. For this situation, the solutions for the 
perturbation function F have already been derived and discussed in the preceding 
section of the paper. 

As previously mentioned, the practical aspects of containment require that 
the lower bounding surface of the layer be rigid, and the corresponding con- 
ditions for the perturbation function F are stated in equation (10). On the other 
hand, the upper bounding surface may either be a free surface or a rigid surface. 
Practically speaking, if the fluid layer were a gas, the upper surface would in 
all likelihood be rigid; while if the layer were liquid, then the upper surface 
could equally well be free or rigid. 

At a horizontal free surface, it  is usually assumed that the vertical velocity 
component to* vanishes; in addition, the free surface is not able to support a 
tangential shear so that au*/az = av*/az = 0. By applying the continuity 
equation, it follows from these later conditions that a2w*/az2 = 0. The two 
aforementioned conditions on uj* can be rephrased in terms of the disturbance 
function F as 

3.1. T h e  hydrodynamic and thermal boundmy conditions 

F = d2F/dZ2  = 0, free surface. (15) 
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Attention will now be directed to the thermal boundary conditions. If the 
wall which bounds the fluid layer has high heat conductivity and large heat 
capacity, then its temperature would be spacially uniform and unchanging in 
time. In  other words, the boundary temperature would be unperturbed by any 
flow or temperature perturbations in the fluid. Thus 

T *  = 0, fixed surface temperature. ( 16) 

On the other hand, suppose that there is a uniform heat flux to the surface, which, 
for example, may be due to Joule heating in a bounding wall of appropriate 
thermal properties. According to Fourier’s Law, the heat flux q passing through 
the boundary per unit time and area is 

q = -kaT/az ,  (17 )  

in which k is the thermal conductivity of the fluid and 2Tla.z is the temperature 
gradient in the fluid a t  the boundary. If q is unperturbed by thermal or flow 
perturbations in the fluid, it follows from the derivative of the first of equations 

( 18) 
( 2 a )  that 

If heat is being transferred a t  a free surface, then the energy conducted up 
to the surface, equation (17), must be carried away by convective-conductive 
(or perhaps radiative) transport to the environment. Such a transport is usually 
expressed in terms of the product of a heat transfer coefficient h and a tempera- 
ture difference which is the driving force for heat transfer. A heat balance 

aT*/aZ = 0, fixed surface heat flux. 

at the surface yields 
- aT k- = h(T-T,), az 

where T, is the temperature in the bulk of the environment. If one replaces T 
by (TLs+ T * )  and notes that - k(aT,/ax) = h(T,,- T,), there follows 

aT*/aZ = (hL /k )  T * ,  surface convection or radiation. (20) 

The group (hL /k )  is sometimes referred to as the Biot number. In addition to 
the free surface, the foregoing boundary condition also applies if the fluid 
layer is separated from an environment by a thin rigid lamina of negligible heat 
capacity. It is interesting to notice that for very small values of (hL/k) ,  the 
boundary condition (20) approaches that for fixed heat flux, equation (18). 
On the other hand, when (hL /k )  is very large, the condition (20) approaches that 
for fixed surface temperature, equation (16) .  In  the development which follows, 
it will be assumed that h is invariant with time. 

The thermal boundary conditions (16 ) ,  (18), and (30) may be restated in 
terms of the disturbance variable F .  From this it follows: 

fixed surface temperature 

fixed surface heat flux 

d2F 
-a --+a4F = 0; 

dZ2 

d3F dF 
2a2--+a4- 0; d5F 

dZ5 dZ3 dZ 

d4F 

- 
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(3Oa) 

The physical situations whose stability will be investigated in this paper may 
now be discussed. For all cases, the lower bounding surface will be regarded as 
rigid. Two thermal boundary conditions at  the lower surface will be considered: 
fixed temperature and fixed heat flux. For each of these, the thermal boundary 
conditions imposed at  the upper surface will be a general convective or radiative 
exchange with the environment as expressed by equations (30) or (300,). This 
includes as special cases the conditions of fixed temperature or fixed heat flux 
at the upper surface. Furthermore, separate consideration will be given to rigid 
and to free upper surfaces. 

3.2. Application of the boundary conditions 
To illustrate the manner in which the stability investigation is carried out, 
a detailed discussion will be given of the solution for one of the physical situations 
described above. The other physical situations are treated in a similar manner, 
with only small differences in detail. 

Consider for concreteness the case of fixed temperature at the lower surface 
with a general convective or radiative transfer at an upper free surface. The 
solution to be applied is equation ( 1  1) )  wherein the f(i) are given by (9), (9a )  and 
(9  b).  In turn, the A and Cl appearing in (7) are stated by equation (12). The bound- 
ary conditions appropriate to the particular case under consideration reduce to 

z = 0: 
d2F 

2a2- = 0 
d4F 
dZ4 dZ2 ’ 
~- 

Upon applying these to equation ( 1 1),  there follows 
- 4a2c2 + M e 4  = 0, 

[c2 f 2 )  + c3 f(3) + c4 f(4) + c5 f(5)]2,1 = 0, 

(23 a )  

(22 b )  

( 2 2  c )  

( 2 2  d )  

The foregoing constitute four linear, homogeneous algebraic equations for 
the four constants, c2, c3, c4 and c5. Solution of such an algebraic system is 
possible only if the determinant of the coefficients of the ci vanishes. The value 
of the determinant depends upon three parameters: the Biot number hLlk, 
the Rayleigh number gp(T,-T2)L3/av, and the constant a which arose from 
the separation of variables. Suppose that the Biot number is held fixed. Then, 
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for each and every a value which one might select, there can be found a Rayleigh 
number that causes the determinant of the coefficients to be zero. Moreover, 
it  is found that for a particular a ,  the corresponding Rayleigh number has a value 
which is smaller than that for any other a. In other words, for every Biot number, 
there is a minimum Rayleigh number which permits a solution of the disturbance 
equation. Below this Rayleigh number, a solution for the disturbance equation 
cannot be found and this implies that the quiescent state is stable. Therefore, 
the aforementioned minimum Rayleigh number corresponds to the onset of 
instability. This is generally called the critical Rayleigh number. 

The numerical computations which are required to find the critical Rayleigh 
number were carried out with the aid of a Control Data 1604 digital computer 
at the Numerical Analysis Center of the University of Minnesota. This machine 
operates with 10-11 decimal places (48 binary bits) and it therefore is able to 
yield results of high accuracy. 

3.3. Critical Rayleigh numbers 
The Rayleigh numbers marking the onset of instability are presented graphic- 
ally in figures 1 (a )  and (b ) .  The first of these provides information for the case in 
which the lower surface is at a fixed temperature, while the second of these is for 
the case in which the lower surface is at a fixed heat flux. On each one of the 
figures, there are two curves: the dashed curve corresponds to a free upper surface 
and is referred to the left-hand ordinate scale; the solid curve corresponds to a 
rigid upper surface and is referred to the right-hand ordinate scale. The hori- 
zontal lines adjacent to the extremities of the curves provide the Rayleigh 
numbers for the limiting cases of hLlk + 0 and hL/k  --z co. 

A parallel presentation of the results is made in tables 1 (a )  and (b ) ,  wherein 
are also listed the a values corresponding to the critical Rayleigh numbers. 
The Rayleigh numbers tabulated therein are believed to be accurate to the 
number of significant figures shown.? The cases designated by hLlk = 0 and 
hL/k  = co respectively correspond to fixed heat flux and to fixed temperature 
a t  the upper surface. 

Attention may first be directed to the results of figure 1 (a) .  From an inspection 
of the figure, it is seen that for a given hydrodynamic condition a t  the upper 
surface, the critical Rayleigh number$ decreases monotonically with decreasing 
Biot number hLlk.  Thus, the most stable situation corresponds to a fixed surface 
temperature. This agrees with an intuitive feeling that the fixing of the surface 
temperature should provide a stronger constraint against perturbation of the 
temperature profile than does the fixing of the temperature derivative at the 
surface. The critical Rayleigh number is most sensitive to Biot number in the 
mid range of Biot numbers. The foregoing remarks apply regardless of whether 
the upper surface is rigid or free. However, there is a marked difference in the 
numerical values of the critical Rayleigh numbers for these two cases. Generally 
speaking, the critical Rayleigh numbers for the rigid surface exceed those for the 

t In  general, the Rayleigh number has a very flat minimum as a function of a. 
$ Note that the Rayleigh number is based on the temperature difference ( T l - T 2 ) ,  

not on (TI--Ta) .  
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free surface by about 600, this difference being nearly uniform over the entire 
range of hLlk. That a fluid layer bounded by a rigid upper surface should be more 
stable is physically quite reasonable. 

1200 1 I I I I I l l  I I I I 1 1 1 1  I I I I I I I I  1900 . 

- - 

1100 - Lower surface at constant temperature 1800 
- Upper surface free ---- 

1000 1700 . 

- 

900 - 1600 - 

- - 

1500 

- - 

- 1400 

- 

1300 

- - 
500 I I I I 1 1 1 1  I I I I I I I I  I I I ' iLLJ 1200 

0.1 1 10 100 

hLlk 
(4 

Upper surface free 
Upper surface rigid 

1200 
- 

- 1100 

- 

- - 

-- 900 400 - 

- 

- 

200 I I I 1 I l l l  I I I I I I l l  I I I I i l l 1  I I I ! I I I I  700 
0.01 0.1 1 10 100 

?kL/k 
( b )  

FIGURE 1. Critical Rayleigh numbers corresponding to linear initial temperature profile. 
(a )  Fixed temperature at  lower bounding surface; ( 6 )  fixed heat flux at lower bounding 
surface. 
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Consideration may next be given to the results of figure 1 ( b )  which correspond 
to the case of a fixed heat flux at the lower surface. From the figure, one sees 
that the critical Rayleigh number decreases with decreasing Biot number. 
So, as before, the most stsable situation occurs when the temperature of the upper 
surface is fixed. Also, the quiescent state is more stable when the upper surface 
is rigid rather than free, the difference in the critical Rayleigh numbers between 
the two cases being on the order of 400. 

Upper surface free Upper surface rigid 
7 A - 7  7-- 

hLJk a x a x 

o t  
0.1 
0.3 
1 
3 

10 
30 

100 
a f  

o t  
0.01 
0.03 
0.1 
0- 3 
1 
3 

10 
30 

I00 
4 

(a)  Lower surface a t  fixed temperature 
3.09 669.001 2.55 
2-115 682.361 2.58 
2-17 706.365 2.64 
2.30 770.569 2.75 
2.46 872.506 2.90 
2.59 989-493 3-03 
2.65 1055.345 3.08 
2.67 1085.893 3.11 
2.68 1100.657 3.12 

(6) Lower surface a t  fixed heat flux 
0 320.000 0 
0.58 338.905 0.71 
0.76 353.176 0.93 
1.015 381.665 1.23 
1.30 428.290 1.57 
1.64 513.792 1.94 
1.92 619.666 2.24 
2.11 725.150 2.44 
2.18 780.240 2.51 
2.20 804.973 2.53 
2.2 1 8 16.748 2.55 

1295.781 
1309.545 
1334.149 
1398.508 
1497.594 
1607.104 
1667.102 
1694.573 
1707.765 

720.000 
747.765 
768.153 
807.676 
869.231 
974.173 

1093.744 
120447 1 
1259.884 
1284.263 
1295.781 

t Corresponds to fixed surface heat flux. 
$ Corresponds to fixed surface temperature. 

TABLE 1. Critical Rayleigh numbers for linear temperature distribution. 

There are some interesting differences in detail between the results of 
figures l ( a )  and ( 6 ) .  First of all, by taking note of the ordinate scales, one sees 
that the Rayleigh numbers appearing on the former are higher. This is in accord 
with the previous finding that the case of fixed temperature is the most stable. 
Further comparison between the figures reveals that the asymptote at vanishing 
hL/k is approached more slowly in figure 1 ( b )  than in figure 1 (a).  

It is of interest to inquire how the present results compare with those of 
other investigations. Only two of the entries in table 1 can be specifically com- 
pared. For the case of prescribed temperature at both boundaries and a rigid 
upper surface, Pellew & Southwell find a critical Rayleigh number of 1707.8, 
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while that of the present investigation is 17070765. For this same thermal con- 
dition, but with a free upper surface, the corresponding values are 1100.65 and 
1100.657. The agreement is thus seen to be excellent. In  addition, if figures 1 (a) 
and ( b )  were to be replotted on linear co-ordinates rather than on semi-logarithmic 
co-ordinates, the curves would have the same qualitative shape as that found by 
Sani for the case of two free surfaces. 

As a final note, it  may be worth while to indicate a typical value for hL/k. 
For a $-inch thick layer of liquid water, a reasonable value for the heat-transfer 
coefficient at its free surface might be 2 B.Th.U./hrft.2 “F; then hL/k would be 
on the order of 0.1. If the lower surface had a fixed temperature, the critical 
Rayleigh number would be 1309. This is substantially less than the value 1708 
which corresponds to a fixed temperature at the upper surface. 

4. Stability criteria for non-linear fluid-temperature distributions 
Consideration will now be given to investigating how the stability of a quiescent 

steady state is affected by the shape of the temperature distribution in the fluid. 
As has already been noted, prior analytical work has been generally concerned 
with an initial quiescent state in which the fluid temperature decreases linearly 
with height.t In  the present study, the non-linearity in the temperature distribu- 
tion is created by a uniformly distributed heat source S (e.g. Joule heating in an 
electrolyte). The boundary conditions selected for this phase of the investigation 
are rigid, fixed-temperature surfaces above and below. 

4.1. The temperature distributions 
If the temperatures of the lower and upper bounding surfaces are designated 
as Tl and T,, respectively, then the steady-state temperature distribution as 
given by equation (1) may be written as 

(T - TJ/(  T’ - T2) = 1 - 2 + N,(Z - Z2) 

or alternatively 

(T-T1)/(T2-Tl) = 1-Z’+(-N,)(Z’-Z’2) ,  Z ’ =  1 - 2  ( 2 3 b )  

in which N ,  is a dimensionless grouping which is defined as 

N ,  = SL2/2k(Tl - T2). (34) 

Inasmuch as (1 - 2) represents the standard linearly decreasing temperature 
distribution, then the departure of N ,  from zero is a measure of the non-linearity 
introduced by the heat source. As it is conceived of here, the heat source S 
will always be a positive number. Therefore, N ,  > 0 will correspond to TI > T2 
and N ,  < 0 will correspond to T2 > TI. Considering now the representations 
(23a) and ( 2 3 b ) ,  it  is seen that the shapes of the temperature profiles for N ,  > 0 
and N ,  < 0 are the same, provided that the former is plotted as a function of Z 
and the latter is plotted as a function of 2‘ = 1 - 2. 

t A study by A. W. Goldstein (1959) involving unsteady heating conditions and time- 
depundent body forces also deals with a non-linear initial temperature profile. 
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Before going on to the actual stability computation, it is worth while consider- 
ing the imposed temperature distributions and their implications in somewhat 
greater detail. A graphical presentation of the temperature distribution is made 
in figure 2. The left-hand ordinate and lower abscissa correspond to the situation 
wherein the temperature of the lower bounding surface is higher than that of 
the upper bounding surface, i.e. N ,  > 0. The right-hand ordinate and upper 
abscissa correspond to the situation in which the temperature of the lower 
surface is less than that of the upper surface, N ,  < 0. 

Z I L  

Z l L  

FIGURE 2 .  Temperatmure profiles in a quiescent fluid layer resulting from 
internal heat generation. 

Consider first the case in which N ,  > 0. In the range 0 < N ,  < 1, the highest 
temperature in the fluid layer occurs a t  the lower bounding surface, 2; = 0. 
Correspondingly, one would not expect the stability characteristics of such a 
layer to be very different from that for the case of the linearly decreasing tem- 
perature. As N ,  increases beyond unity, temperatures in excess of that at 
Z = 0 occur within the fluid. Further increases in N ,  give rise to corresponding 
increases in fluid temperature, and the location of the temperature maximum 
approaches closer to 2 = +. 

The situation is somewhat different for N ,  < 0. In the range - 1 < N ,  < 0, 
the temperature is monotonically increasing with height and the quiescent state 
is completely stable. However, for N ,  < - 1, temperatures within the fluid 
exceed that of the upper bounding surface, with the consequence that heavier 
fluid lies above lighter fluid and instability becomes possible. 
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4.2. Stability computation and results 
The actual computation of the stability criteria is carried out in a manner 
similar to that already described in the study relating to the various boundary 
conditions. The series solution (1 1) is utilized as before, but now the parameters 
A and SZ which appear in the recursion relation (9  a )  become 

(25) A = a2R( 1 - N,)  -a6, Q = 2~,29?N,~. 

INS1 

FIGURE 3. Criticit1 Rayleigh numbers corresponding to non-linear initial 
temperature profiles and rigid, isothermal bounding surfaces. 

Corresponding to the four constants c2, c3, c4 and c5, one may derive four equations 
by requiring that equation (1 1) satisfy condition (16a) at  2 = 0 and conditions 
(16a) and (10) a t  2 = 1. The equations thus derived are linear and homogeneous, 
and a solution is possible only when the determinant of the coefficients vanishes. 
The value of the determinant depends on the parameters N,, R and a. It is 
found that for a given value of N,, there is a minimum value of the Rayleigh 
number7 below which the determinant cannot be zero. This, therefore, corre- 
sponds to the critical Rayleigh number marking the onset of instability. 

The critical Rayleigh numbers which have been computed in this way are 
plotted in figure 3 for parametric values of N ,  and are also listed in table 2. 

t In  this context, the temperature difference appearing in the Rayleigh number is IT, - T , / .  
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The figure contains two curves, one corresponding to the case in which TI > T, 
( N ,  > 0) and the second corresponding to TI < T, ( N ,  < 0). Considering the f i s t  
of these curves, it  is seen that the stability criteria for layers characterized by 
N ,  < 1 are very little different from that of the linear temperature case which is 
indicated on the figure as a dashed horizontal line. As N ,  increases, the critical 
Rayleigh number decreases, a t  first rather slowly and later quite rapidly. The 
non-linear temperature distribution is clearly a destabilizing influence. 

The second curve on figure 3 (Tl < T,) displays some interesting differences 
from that described above. First of all, as N ,  approaches minus one, the curve 
approaches infinity (complete stability a t  any finite value of Rayleigh number). 
With increases in 1 N,I , the Rayleigh number drops sharply. At large values of 
IN,/ ,  there is little difference between the stability criteria for TI > T, and 
Tl < T,; this is quite reasonable, since the actual temperature profiles (i.e. T 
versus 2) are very little different. 

k N ,  
0 
0.1 
0.25 
0-5 
1 
1.5 
2.5 
3 
5 
7.5 

10 
15 
20 
30 
40 
70 

100 
m 

a 

3.12 
3.12 
3.12 
3.12 
3.13 
3.14 
3.18 

3.30 
3.43 
3.53 
3.68 
3.74 
3-82 
3.86 
3.92 
3.94 
4.00 

- 

For N ,  > 0 
7 h 

% Q 
1,707.765 1,707.765 
1,707.636 1,707.636 
1,706.953 1,706-953 
1,704.453 1,704.453 
1,694.953 1,694-953 
1,679.407 1,012.374 
1,632.886 686.098 

1,462.863 568.761 
1,279-267 560.610 
1,118-430 562.888 

878.339 568.522 
717.201 572.094 
521.403 575.900 
408.558 577.807 
247.075 580.201 
176-936 58 1.130 
- 583.206 

- - 

For N ,  < 0 

a 

- 

6.13 
5.10 
4.73 
4.59 
4.38 
4.28 
4-18 
4.14 
4.08 
4.06 
4.00 

- 

47,673.615 
11,527.500 
5,172.813 
3,215.221 
1,783.818 
1,221.732 

744.170 
533.579 
287.819 
196.891 

Q 

~ 

588.563 
590.208 
592.787 
593.299 
592.210 
590.846 
588.880 
587.668 
585.899 
585.129 
583.206 

TABLE 2. Critical Rayleigh numbers for non-linear temperature distribution. 

Table 2 provides the detailed information from which figure 3 was prepared 
and additionally contains the a values corresponding to these critical Rayleigh 
numbers. There is also listed in table 2 a parameter %. The latter is a Rayleigh 
number constituted as follows: the temperature difference is formed between 
the maximum temperature in the fluid T, and the temperature of the upper 
surface T,. The length dimension is the distance L, between the temperature 
maximum and the upper surface. Thus, 

@ = gp(T, - T2) LIlav. (26) 

When N ,  is positive and 6 1, @ = %. For other values of N,, '% is readily com- 
puted from '3 in conjunctioii with (qn - T2) and L, from equation (23a) .  From 
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table 2, it is seen that for all N ,  extending from 4-t to co, @falls in the surprisingly 
narrow range between 560 and 595. This is true regardless of whether N ,  is posi- 
tive or negative. From this, one might conjecture that when the location of 
the maximum fluid temperature is sufficiently far removed from the lower 
bounding surface, then the presence of this surface does not influence the stability 
of the layer above it. 

To complete the presentation of results, a word may be said about the case 
N ,  = CQ. This corresponds to a situation in which TI = T,; consequently, a Ray- 
leigh number based on the temperature difference (TI - T2) does not convey any 
information about the stability characteristics. However, the 3 continues to 
provide a sufficient representation of the stability result, where it is noted that 
T,-T, = XL2/8k and L, = @5L. 
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